the successful application of higher order connectedness on tree decomposition leads us to seek further implementation of higher order connectedness to other branches of graph theory 而成功地應(yīng)用高階邊連通性證明樹(shù)分解中的問(wèn)題,使我們進(jìn)一步尋找高階連通性在其它圖論問(wèn)題中的應(yīng)用。
in the last chapter, we use the results of higher order edge connectivity to study the tree decomposition of transitive graphs, deriving a sufficient condition for a graph to have tree number equivalent to the arboricity 在最后一章中,我們使用高階邊連通度的結(jié)果研究對(duì)稱圖中樹(shù)分解的一個(gè)問(wèn)題,給出了森林?jǐn)?shù)等于樹(shù)數(shù)的一個(gè)充分條件。
fractal coding has been proved useful for image compression . it is also proved effective for content-based image retrieval . in the paper, we present a block-constrained fractal coding scheme and a matching strategy for content-based image retrieval . in this coding scheme, an image is partitioned into non-overlap blocks of a size close to that of a query iconic image . fractal codes are generated for each block independently . in the similarity measure of fractal codes, an improved nona-tree decomposition scheme is adopted to avoid matching the fractal codes globally in order to reduce computational complexity . our experimental results show that our coding scheme and the matching strategy we adopted is useful for image retrieval, and is compared favorably with other two methods tested in terms of storage usage and computing time 分形編碼在圖像壓縮方面取得了很好的效果,同時(shí),分形編碼也能夠用于基于內(nèi)容的圖像檢索.本文提出了一種基于塊限制的分形編碼算法和匹配策略,并將它們用于圖像檢索.在我們編碼算法中,圖像會(huì)被預(yù)先分成互相不重疊的子圖像塊,然后對(duì)這些子圖像進(jìn)行獨(dú)立地分形編碼,從而獲得整幅圖像的分形碼.該編碼算法能夠在很大程度上減少編碼時(shí)間.在進(jìn)行圖像間相似性的匹配時(shí),我們采用改進(jìn)的基于九叉樹(shù)的分配策略,從而避免全局地進(jìn)行分形碼的匹配,減少了計(jì)算量.實(shí)驗(yàn)結(jié)果說(shuō)明,我們的編碼算法和匹配策略能夠比較有效地應(yīng)用于基于內(nèi)容的圖像檢索,在計(jì)算時(shí)間和存儲(chǔ)時(shí)間上都優(yōu)于實(shí)驗(yàn)中其它兩種方法